Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Marcoaurelio Almenara Rodrigues

Marcoaurelio Almenara Rodrigues

Federal University of Rio de Janeiro, Brazil

Title: Evaluation of chlorella sorokiniana mixotrophic growth using xylose as a carbon source

Biography

Biography: Marcoaurelio Almenara Rodrigues

Abstract

Microalgae are photosynthetic microorganisms that may grow mixo or heterotrophically with higher biomass yield be used for the production of biofuels and high value compounds such as pigments and polyunsaturated fatty acids without direct competition for land, water and crop production. Cheap organic compounds, such as glycerol, acetate and xylose, a byproduct of the sugar cane bagasse pretreatments, can be used as carbon source. In this work it was evaluated the ability of Chlorella sorokiniana to grow mixotrophically using xylose as organic carbon source. Cells were grown in orbital shaker for 13 days under 50 µmol photons·m-2·s-1 irradiance at 30ËšC in Bold’s Basal Medium containing 25 mg/mL chloramphenicol, 100 mg/mL penicillin and 20 mg/mL sodium acetate to control contamination by bacteria and fungi respectively. Cell growth was followed by cell counting and xylose was added at the medium culture at the beginning (single batch) at the sixth day of growth (fed batch). Xylose consumption was determined by measuring the residual reducing sugar by the DNS method. As control, cells were grown photoautotrophically under the same conditions. Cells under mixotrophic growth showed two exponential phases. The first showed the same specific rate of growth of 0.9 d-1 observed for the photoautotrophic growth. However, the second phase showed respectively specific rate of growth of 0.6 d-1 and 0.4 d-1 for single and fed batches, and their final biomass yields were 3.2 and 4.0 fold higher than that obtained for the photoautotrophic growth. The influence of acetate on the growth is being investigated.