Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Joseph Zeaiter

Joseph Zeaiter

American University of Beirut, Lebanon

Title: Design of an automated solar reactor for the pyrolysis of waste rubber to fuel and petrochemicals

Biography

Biography: Joseph Zeaiter

Abstract

An automated solar reactor system was designed and built to carry out catalytic pyrolysis of waste rubber tires at 550° C. To maximize solar energy concentration, a two degrees-of-freedom automated sun tracking system was developed and implemented. Both the azimuth and zenith angles were controlled via feedback from six photo-resistors positioned on a Fresnel lens. The pyrolysis of waste rubber was tested with the presence of two types of acidic catalysts, H-beta and H-USY. Additionally, a photoactive TiO2 catalyst was used and the products were compared in terms of gas yields and composition. The catalysts were characterized by BET analysis and the pyrolysis gases and liquids were analyzed using GC-MS. The oil and gas yields were relatively high with the highest gas yield reaching 32.8% with H-beta catalyst while TiO2 gave the same results as thermal pyrolysis without any catalyst. The dominant gaseous components in the presence of zeolites were propene and cyclobutene. The TiO2 and non-catalytic experiments produced a gas product of mainly isoprene (76.4% and 88.4% respectively). As for the liquids they were composed of numerous components spread over a wide distribution of C10 to C29 hydrocarbons of naphthalene and cyclohexane/ene derivatives.